1544 - R(N)
Time Limit : 2 Second
Memory Limit : 128 MB
Submission: 569
Solved: 209
- Description
We know that some positive integer x can be expressed as x=A^2+B^2(A,B are integers). Take x=10 for example, 10=(-3)^2+1^2.
We define R(N) (N is positive) to be the total number of variable presentation of N. So R(1)=4, which consists of 1=1^2+0^2, 1=(-1)^2+0^2, 1=0^2+1^2, 1=0^2+(-1)^2.Given N, you are to calculate R(N).- Input
No more than 100 test cases. Each case contains only one integer N(N<=10^9).
- Output
For each N, print R(N) in one line.
- sample input
-
2 6 10 25 65
- sample output
-
4 0 8 12 16
- hint
For the fourth test case, (A,B) can be (0,5), (0,-5), (5,0), (-5,0), (3,4), (3,-4), (-3,4), (-3,-4), (4,3) , (4,-3), (-4,3), (-4,-3)
- source